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a b s t r a c t

A new, more general type of electrostatic ion trap mass analyzer is described. The potential distribution
of the electrical field in this trap can be expressed as a combination of a quadrupolar and logarithmic-
Cassinian potential. As the field can be described, in part, by the Cassinian equation the trap is called a
ccepted 23 January 2009
vailable online 3 February 2009

eywords:
lectrostatic trap
armonic motion

Cassinian trap. One mode of the Cassinian trap allows for a one-dimensional trapping motion. This is the
first time a one-dimensional trapping motion has been theorized in combination with a harmonic analysis
motion in an electrostatic trap. The one-dimensional trapping motion allows ions to be introduced and
trapped readily in the Cassinian trap. Theoretically, a mass range of a factor of 50 can be accommodated.

© 2009 Elsevier B.V. All rights reserved.
on motion
assinian equation

. Introduction

Electrostatic orbital ion trapping was first shown by Kingdon [1].
he ideal Kingdon trap consists of a wire along the center-axis of a

ong tube. If an electric potential is applied between the wire and
he tube an electric field attracts ions to the wire. If the ions have
he proper kinetic energy perpendicular to the attracting direction
hey will orbit around the wire thus the ions will be trapped. If the
ube is infinitely long, the electric potential, � (r), between the wire
nd the tube can be expressed by the one-dimensional equation:

(r) = ln(r/ri)
Rln

· Uln + Uoff (1)

where Rln = ln(ro/ri), the wire diameter is 2ri and the inner diam-
ter of the tube is 2ro. Uoff corresponds to the voltage applied to
he wire and Uln + Uoff the voltage applied to the tube. Makarov [2]
howed in his paper in 2000 that ions can be trapped in orbits
round the inner electrode while simultaneously conducting an
xial harmonic oscillation. This trap is commonly known as the
rbitrap. The electric field in an Orbitrap can be expressed as a
ombination of a quadrupolar and logarithmic potential and can be

ritten as a two-dimensional equation:

(r, z) = ln(r/ri)
Rln

· Uln + 2 · z2 − r2 − c2

Rquad
· Uquad + Uoff (2)

Abbreviations: LCP, logarithmic-Cassinian potential; 1D, one-dimensional.
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where Rln = ln(ro/ri), Rquad = ro2 − ri2 and c = ri. The potential in the
Orbitrap will be Uoff (the voltage of the inner electrode) at r = ri
(the radius of the inner electrode at z = 0). The potential of the outer
electrode Uln + Uoff − Uquad is reached at r = ro (the radius of the outer
electrode at z = 0). The mass analysis of this device is derived from
the harmonic oscillation of ions along the z-axis [3,4]. The frequency
of an ion’s oscillation depends on the ion’s m/z.

However, there are alternative concepts for constructing elec-
trostatic traps that have harmonic ion oscillations along the z-axis.
The potential in one such trap can be described as:

� (x, y, z) = ln(((x2 + y2)
2 − 2 · b2 · (x2 − y2) + b4)/ai4)

Aln
· Uln

+ 2 · z2 − (2 − B) · x2 − B · y2 − c2

Aquad
· Uquad + Uoff (3)

where Aln = ln(ao4/ai4), Aquad = 2 (ao2 − ai2) and c2 = 2ai2, and B is a
constant.

The numerator of the quotient inside the logarithm corresponds
to the well known Cassinian equation [5]:

(x2 + y2)
2 − 2 · b2 · (x2 − y2) + b4 = a4 (4)

Hence this trap should be named Cassinian trap, where the equa-
tion for the Orbitrap is just a subset wherein r2 = x2 + y2, b = 0, ai = ri,
and ro = ao.

This leads to the quite obvious description of a combination of

a general logarithmic potential with a quadrupole potential:

� (x, y, z) = A1 · ln(f (x, y)) + A2 · (2 · z2 − (2 − B) · x2 − B · y2) (5)

The quadrupole potential alone satisfies already the Laplace
equation �� (x,y,z) = 0, that applies also to the logarithmic

http://www.sciencedirect.com/science/journal/13873806
http://www.elsevier.com/locate/ijms
mailto:ck@bdal.de
dx.doi.org/10.1016/j.ijms.2009.01.014
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Fig. 1. A 3D plot of a classical Cassinian trap. The grid represents the outer electrodes
or receiving plates and the smooth mesh the inner electrodes.
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Fig. 2. A 3D plot of a second order Cassinian trap.

otential, which gives a general definition of f(x,y):

(x, y) = (d/dx(f (x, y)))2 + (d/dy(f (x, y)))2

d2/dx2(f (x, y)) + d2/dy2(f (x, y))
(6)

The function f(x,y) = x2 + y2 as well as f(x,y) = (x2 + y2)2 −
b2(x2 − y2) + b4 satisfy this requirement and there are probably
ore functions.

However, this brings us back to the Cassinian trap. The shape
f the outer and inner electrode which corresponds to an equipo-
ential surface can be derived when Eq. (3) is solved for z. z is then
function in x and y. If � (x,y,z) is replaced by the voltage of the
uter electrode, z corresponds to z-values for the outer electrode
nd if � (x,y,z) is replaced by the voltage of the inner electrode, z
orresponds to z-values for the inner electrodes. Fig. 1 shows a typ-

Fig. 3. Trapping motions in a classical Cassinian trap. (a)
Fig. 4. Additional trapping motions, e.g., in a second order Cassinian trap. (a)
Cassinian curve and (b) cloverleaf.

ical Cassinian trap with the outer electrode as a grid and the inner
electrodes as a smooth mesh.

The potential distribution of the field can be expressed as a com-
bination of a quadrupolar and logarithmic-Cassinian potential. The
logarithmic-Cassinian potential (LCP) can be turned around the z-
axis and so different LCPs can be combined to give Cassinian traps
of higher order. To address this, in Eq. (3) x and y are replaced by:

gx(x, y, xoffn , yoffn , ˛n) = (x + xoffn ) · cos(˛n) + (y + yoffn ) · sin(˛n)

(7.1)

gy(x, y, xoffn , yoffn , ˛n) = (y + yoffn ) · cos(˛n) − (x + xoffn ) · sin(˛n)

(7.2)

When different LCPs, with different b-, xoff-, yoff- and ˛-values
are combined Eq. (3) converts to:

� (x, y, z) =
∑

n

[
ln(((g2

x + g2
y )

2 − 2 · b2
n · (g2

x − g2
y ) + b4

n)/ai4n)

Alnn

· Ulnn

]

+ 2 · z2 − (2 − B) · x2 − B · y2 − c2

Aquad
· Uquad + Uoff (8)

E.g., a trap with four inner electrodes (see Fig. 2) which corre-
sponds to an order of n = 2.

In the following, the motion along the z-axis will be referred
to as the analytical motion. The motion in the x–y plane will be
referred to as the trapping motion. The motion along the z-axis
is always harmonic. While the trapping motions in the Kingdon
trap or Orbitrap are always orbital can the trapping motions in the
Cassinian trap may be orbital or non-orbital.

An orbital trapping motion around the inner electrodes of a
Cassinian trap is possible (see Fig. 3a). Where the lemniscate
like (see Fig. 3b), nephroidic (see Fig. 3c) and especially the one-

dimensional (1D) motion (see Fig. 3d) are non-orbital. Higher order
traps according to Eq. (8) can exhibit even more trapping motions
(see Fig. 4). This is the first time non-orbital harmonic ion trapping
in an electrostatic ion trap has been theorized.

Orbital, (b) nephroidic, (c) lemniscate and (d) 1D.



116 C. Köster / International Journal of Mass Spectrometry 287 (2009) 114–118

Table 1
Cassinian trap parameters used to plot the outer- and inner-electrode surface and ion-trajectories. For Figs. 2 and 4 a second LCP was superimposed to the LCP used for
Fig. 3 or 5.

xoff (mm) yoff (mm) ˛ (◦) ai (mm) ao (mm) b (mm) Uln (V) B Uquad (V) Uouter-electrode (V) Uinner-electrode (V) Uoff (V)

Fig. 1 0 0 0 6.5 19 7 900 1 100 1000 0 0
Figs. 3 and 5 0 0 0 6.5 19 7 900 1 100 1000 −800 0
Figs. 2 and 4 0 0 90 6.5 19 7 900

Table 2
Ions’ starting conditions for trajectory calculations.

Fig. 3a Fig. 3b Fig. 3c Fig. 3d Fig. 4a Fig. 4b Fig. 5

Motion Orbital Lemniscate Nephroidic 1D Cassinian Coverleaf 2D
x0 (mm 10 0 0 0 10 3 3
y0 (mm) 0 0 0 18 0 −3 18
z0 (mm) 0 0 0 0 0 0 0
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nglexy-plane (◦) 90 44 47
ngleyz-plane (◦) 0 0 0
kin (eV) 705 293 100

Table 1 summarizes the trap parameters, which served as a basis
o describe the electric potential for positive ion trajectory calcu-
ations and to plot the shape of the outer and inner electrode for
igs. 1–4.

In Table 2 are shown the ion starting conditions leading to tra-
ectories presented in Figs. 3–5.

The stability of the trajectory of trapped ions varies widely
ccording to the type of trapping motion. For example, the lem-
iscate like (Fig. 3b) and cloverleaf like motions (Fig. 4b) are highly
nstable. Slight changes in the ions’ starting conditions lead rela-
ively quickly to collisions with the inner electrodes. In contrast, the
rbital (Fig. 3a), nephroidic (Fig. 3c), Cassinian curve (Fig. 4a) and
specially the 1D trapping motion (Fig. 3d) are very stable.

. Theory

The 1D trapping motion is an especially useful trapping motion,
ecause ions with almost no initial kinetic energy can be trapped

nside the Cassinian trap. Thus, the remainder of this article will
ocus on this 1D trapping motion.
.1. Ion motion

Ions created at an appropriate position within the trap (e.g., by
aser ionization of gas phase aromatic hydrocarbons) will be imme-

ig. 5. Trapping motion in a classical Cassinian trap with a distinct starting ampli-
ude in x and y.
0 90 45 0
0 0 0 0
0 318 95 0

diately trapped and begin their harmonic motion along the z-axis.
Exemplary ion trajectories in a Cassinian trap should be considered.
These can be derived by applying the Lagrange-formalism. The force
in the direction d, Fd = m ad, where m is the mass and a the accel-
eration towards d is equal to Fd = −q Ed, where q is the charge and
Ed the electric field towards d. The derivative of � (x,y,z) in all three
spatial directions yields the electrical field:

m · d2

dt2
x = −q ·

[
4 · (x2 + y2) − 4 · b2

(x2 + y2)2 − 2 · b2 · (x2 − y2) + b4
· Uln

Aln

−2 · (2 − B) · Uquad

Aquad

]
· x (9.1)

m · d2

dt2
y = −q ·

[
4 · (x2 + y2) + 4 · b2

(x2 + y2)2 − 2 · b2 · (x2 − y2) + b4
· Uln

Aln

−2 · B · Uquad

Aquad

]
· y (9.2)

m · d2

dt2
z = −q · 4 · Uquad

Aquad
· z (9.3)

Eq. (9.3) describes a harmonic oscillator. The complete solution
of the differential equation is:

z(t) = z0 · cos(2 · � · fz · t) +
√

m

2 · q
· vz2

0 · Aquad

2 · Uquad
· sin(2 · � · fz · t)

(10)

where z0 is the starting position and vz0 is the starting velocity
along the z-axis. The frequency of the ion motion on the z-axis is
given by:

fz = 1
2 · �

·
√

4 · q

m
· Uquad

Aquad
(11)
Eqs. (9.1) and (9.2) are highly nonlinear and difficult to analyze.
At least Eq. (9.2) can be analytically solved for x = 0:

m · d2

dt2
y = −q ·

[
4

y2 + b2
· Uln

Aln
− 2 · B · Uquad

Aquad

]
· y (12)
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Fig. 6. An example of d�� (x,y,z)/dz at x = 0 from a SIMION calculation.

Substitution and separation of the variables results in:

(y) =
∫ y

y0

1√
(q/m) · (4 · ln((y2

0 + b2)/(y2 + b2)) · (Uln/Aln) + 2 · B · (Uq

which is dependent on the starting conditions in y. The motion
n y can be approximated as a combination of cosine functions:

(t) = ymax ·
∑∞

i=0kyi · cos(kyi · 2 · � · fy · (t − tymax))∑∞
i=0kyi

(14)

where fy = 2/(t(ymax) − t(−ymax)), and the frequency in y, is
ependent in the initial values y0 and vy0. The maximum amplitude

n y, ymax, can iteratively be calculated by solving:

max =
√

Aquad

B · Uquad
·
(

2 · Uln

Aln
· ln

(
y2

max + b2

y2
0 + b2

)
− m · vy2

0
2 · q

)
+ y2

0

(15)

The motion in x for stable conditions looks like an amplitude
odulated carrier frequency. The modulation frequency is fy and

he carrier frequency fx:

(t) = 1
2

· y2
max + y(t)2

y2
max

· x0 ·
∑∞

i=0kxi · cos(kxi · 2 · � · fx · t)∑∞
i=0kxi

(16)

The kxi respectively the kyi values have to be adjusted to fit the
ssumed motion in x(t) and y(t) with the simulation. A stable trap-
ing motion with a distinct starting amplitude in x is shown in
ig. 5.

The matter of ion stability is discussed below in Section 3.

.2. Ion detection

In an experimental setup, the outer electrode of the Cassinian
rap will be split at z = 0. Ions can be detected by measuring the
ifferentially amplified image current induced on the split outer
lectrodes. According to Greens’s reciprocity theorem [6] and in
ssuming the absence of any space charge effects and any residue
as, the current induced on an electrode is equal to:

(t) = − qion ·
∑(

d
�� (x , y , z ) · d

x + d
�� (x , y
�U
ion

dx ion ion ion dt ion dy ion ion ion

where qion corresponds to the charge per ion and �U the voltage
pplied to the electrode which would generate a potential change
t x, y and z in the absence of any ions. Each ion induces a change
pectrometry 287 (2009) 114–118 117

quad) · (y2 − y2
0)) + vy0

2
· dy (13)

) · d
y + d

�� (x , y , z ) · d
z

)
(17)

of the potential �� (xion,yion,zion) on the trap electrodes. The sum
of the deviations in all three spatial dimensions multiplied by the
ion velocity in x, y and z, and averaged over all ions gives the image
current. The motion in x and y are not harmonic, so the ions will
go out of phase much faster than in the harmonic motion in z. This
means that a short time after ion motion is initiated, Eq. (17) can be
simplified to:

I(t) = − q

�U
· Nions · d

dz
�� (x, y, z) · d

dt
z (18)

where Nions is the total number of ions.
SIMION calculations (see Fig. 6.) show that d�� (x,y,z)/dz can be

approximated:

d

dz
�� (x, y, z) =

(
x2 + y2

C2

)3

· exp

(
−D · z2

x2 + y2

)
(19)

where C and D are constants. In our special case we consider no
space charge effects, just the 1D trapping motion with amplitudes
in x close to 0 and a motion in y described by Eq. (14). Averaged in
time, an ion stays in x and y close to their reversal points, because

the velocity there is near 0. So x and y can be replaced by the average
values x̄ = 0.64 · x0 and ȳ = 0.64 · y0.

Thus the expected signal for one type of ion is not just a sine wave
but the product of a sine wave with a function which is dependent
on the ion location.

I(t) = q

�U
· Nions ·

(
x2

0 + y2
0

�C2

)3

· exp

(
−D · (z0 · cos(2 · � · fz · t))2

x2
0 + y2

0

)
·2 · � · fz · z0 · sin(2 · � · fz · t) (20)

D is a factor dependent on the trap geometry and the precision of
the traps’ construction.

2.3. Ion injection

As an example of an ion optically ideal case, ions of a gaseous aro-
matic compound can be created in a Cassinian trap via a UV-laser
beam. When the ions are formed they are immediately trapped.
The laser beam can be focused at a point with z = 0 (equatorial) or
at a point with |z| > 0 (non-equatorial) (e.g., x = 0 and |y| > 2·b). In the
equatorial case the laser-beam duration can be very long to accu-
mulate ions. The ions can be formed at x ∼ 0 and |y| > 2·b so they are
trapped via a 1D trapping motion. Before signal acquisition the ions
have to be excited into motion along the z-axis by applying a short
voltage pulse to one of the outer electrodes. In the non-equatorial
case the laser-beam has to be switched off shortly before half the
period of the oscillation of the smallest m/z ratio to be detected,
because the ions begin their z-axis harmonic motion immediately
when they are created.

Ions created outside the trap can be trapped by continuously
increasing the absolute voltage of the inner electrodes while load-
dt ion dz ion ion ion dt ion

ing. The potential difference between the inner and outer electrode
has to be increased by Ukin, the kinetic energy of the ion entering
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he trap, within duration proportional to the oscillation period, Tz.

d

dt
Uel = Ukin

k · Tz
(21)

Tz can be exchanged by 1/fz and within Eq. (11) the mass can
e exchanged by m = 2qUkin(L/t)2, where L is the distance the ions
ravel from the ion source to the trap, and t is the ion’s flight time
etween the source and the trap. Integrating Eq. (21) with the above
ubstitution results in:

el(t) =
(√

Uel0 + L

k · �
·
√

Ukin

2 · Aquad
· ln

(
t

t0

))2

(21)

where t0 is the flight time of the smallest ion to be trapped
nd Uel0 the potential difference between the inner and outer elec-
rode at the entrance of this ion. In general a Cassinian trap can
old ions for Uel smaller than 1.25 Uel0. This results in a mass range
atio m/m0:

m

m0
= exp

(
2 · � · k

L
· (

√
1.25 − 1) ·

√
2 · Aquad · Uel

Ukin

)
(22)

For example, assuming Aquad = 6.375 × 10−4 m2, k = 2, L = 1 cm,
kin = 10 V and Uel0 = 1000 V is m/m0 ≈ 50. So an ion with 50 amu
nd an ion with 2500 amu can be trapped simultaneously.

. Discussion

Because the given differential equations are difficult to analyze
t is also difficult to come up with general stability criteria. However
IMION calculations show that a combination of parameter b, ai, ao,
and the ratio of Uln/Uquad can be found to create stable trapping

onditions. It is quite clear that ao > b > ai. For best performance as a

ass analyzer, the analytical frequency, fz, should be as high as prac-

ically possible. From the above discussion, fz is inversely related to
o2 − ai2 and is proportional to

√
Uquad. However, for stability rea-

ons Uln/Uquad should be approximately 10 or higher. A stable 1D
rapping motion in x and y is given for starting coordinates y > 2b.

[
[
[
[
[
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Larger starting values in y allows for stable trajectories having a
greater deviation in x, vx or vy. Naturally space charge effects can
have a significant influence on the ion trajectories and therefore
on the measured signal, however, these effects have been left for
future studies. Furthermore is it possible to analyze fragment ions
produced by metastable decay of parent ions, because the decay is
more likely in the area of high probability density. So a high percent-
age (>60%) of the first daughter ion generation can be trapped and
analyzed when injected equatorial and excited in the z-direction.

4. Conclusion

A new, more general type of electrostatic ion trap mass ana-
lyzer is described. The potential distribution of the electric field in
this trap can be expressed as a combination of a quadrupolar and
logarithmic-Cassinian potential. As the field can be described, in
part, by the Cassinian equation the trap is called a Cassinian trap.
One mode of the Cassinian trap allows for a 1D trapping motion. This
is the first time a 1D trapping motion has been theorized in com-
bination with a harmonic analysis motion in an electrostatic trap.
The 1D trapping motion allows ions to be introduced and trapped
readily in the Cassinian trap. Theoretically, a mass range of a factor
of 50 can be accommodated.
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